Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Journal of Building Engineering ; : 104593, 2022.
Article in English | ScienceDirect | ID: covidwho-1851606

ABSTRACT

Airborne dispersion of the novel SARS-CoV-2 through the droplets produced during expiratory activities is one of the main transmission mechanisms of this virus from one person to another. Understanding how these droplets spread when infected humans with COVID-19 or other airborne infectious diseases breathe, cough or sneeze is essential for improving prevention strategies in academic facilities. This work aims to assess the transport and fate of droplets in indoor environments using Computational Fluid Dynamics (CFD). This study employs unsteady Reynolds-Averaged Navier-Stokes (URANS) simulations with the Euler-Lagrange approach to visualize the location of thousands of droplets released in a respiratory event and their size evolution. Furthermore, we assess the dispersion of coughing, sneezing, and breathing saliva droplets from an infected source in a classroom with air conditioning and multiple occupants. The results indicate that the suggested social distancing protocol is not enough to avoid the transmission of COVID-19 since small saliva droplets ( ≤ 12 μm) can travel in the streamwise direction up to 4 m when an infected person coughs and more than 7 m when sneezes. These droplets can reach those distances even when there is no airflow from the wind or ventilation systems. The number of airborne droplets in locations close to the respiratory system of a healthy person increases when the relative humidity of the indoor environment is low. This work sets an accurate, rapid, and validated numerical framework reproducible for various indoor environments integrating qualitative and quantitative data analysis of the droplet size evolution of respiratory events for a safer design of physical distancing standards and air cleaning technologies.

2.
Rob Auton Syst ; 147: 103919, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1475041

ABSTRACT

Coexisting with the current COVID-19 pandemic is a global reality that comes with unique challenges impacting daily interactions, business, and facility maintenance. A monumental challenge accompanied is continuous and effective disinfection of shared spaces, such as office/school buildings, elevators, classrooms, and cafeterias. Although ultraviolet light and chemical sprays are routines for indoor disinfection, they irritate humans, hence can only be used when the facility is unoccupied. Stationary air filtration systems, while being irritation-free and commonly available, fail to protect all occupants due to limitations in air circulation and diffusion. Hence, we present a novel collaborative robot (cobot) disinfection system equipped with a Bernoulli Air Filtration Module, with a design that minimizes disturbance to the surrounding airflow and maneuverability among occupants for maximum coverage. The influence of robotic air filtration on dosage at neighbors of a coughing source is analyzed with derivations from a Computational Fluid Dynamics (CFD) simulation. Based on the analysis, the novel occupant-centric online rerouting algorithm decides the path of the robot. The rerouting ensures effective air filtration that minimizes the risk of occupants under their detected layout. The proposed system was tested on a 2 × 3 seating grid (empty seats allowed) in a classroom, and the worst-case dosage for all occupants was chosen as the metric. The system reduced the worst-case dosage among all occupants by 26% and 19% compared to a stationary air filtration system with the same flow rate, and a robotic air filtration system that traverses all the seats but without occupant-centric planning of its path, respectively. Hence, we validated the effectiveness of the proposed robotic air filtration system.

SELECTION OF CITATIONS
SEARCH DETAIL